architecture, Craftsmanship, Design, Java, Refactoring

Soul coding

Yesterday I had a 12 hour non-stop[1] code fest to refactor a thin slice of 2-tiered web application into a 3-tiered one. It was very productive and I must say this is the kind of stuff that soothes my developer soul and hence the name. 🙂

The primary driver for the refactoring was that the core logic of the application was tightly coupled on both ends to the frameworks being used. On one side, it was tied to the web application framework, Play and on the other end the ORM, Ebean. We managed to move the business logic in to a separate tier, which is good on it own, but also let us unit test the business logic without bothering with the frameworks, which can be frankly quite nasty. As a follow on effect, we also managed to split the models into 2 variants, one to support the database via Ebean and the other to generate JSON views using Jackson. This let us separate the two concerns and test them nicely in isolation. Similarly, we could test the controllers in isolation. We got rid of bulk of our functional tests that were testing unhappy paths for which we had unit tests at the appropriate place viz., the controller, view model, service and database models.

I was quite amazed at how much we could get done in a day. Here are some of the important take aways from this experiment:

  • We had a discussion the previous day about how we wanted to restructure the code, primarily focusing on separation of responsbilities and improving unit testability of the code. We agreed upon certain set of principles, which served as a nice guideline going into the refactoring. On the day of refactoring, we realized that not all the things we discussed were feasible, but we made sensible adjustments along the way.
  • Keep your eye on the end goal. Keep reminding yourself of the big picture. Do not let minor refactorings distract you, write it down on a piece of paper so you dont forget.
  • Pairing really helps. If you are used to pairing, when you are doing refactoring at this scale, it doubly helps. Helps you keep focused on the end goal, solves problems quickly due to collective knowledge and also decision making cycle time is considerably reduced when making adjustments to the initial design. Also I would say pick a pair who is aligned with you on the ground rules of how you are going to approach development. You don’t want to get into a discussion of how or why you should be writing tests and what is a good commit size.
  • Having tools handy that get you going quickly. Between me and my pair, we pretty much knew what tool to use for all the problems at hand. At one point, we got stuck with testing static methods and constructors. My pair knew about PowerMock, we gave it a spin and it worked. And there it was, included in the project. Dont spend too much time debating, pick something that works and move on. If it does not work for certain scenarios, put it on your refactoring list.
  • Thankfully for us, we had a whole bunch of functional tests already at our disposal to validate the expected behavior, which was tremendously useful to make sure we weren’t breaking stuff. If you dont have this luxury, then pick a thin slice of functionality to refactor which you can manually test quickly.
  • Small, frequent commits. Again the virtuosity of this is amplified in this kind of scenario.
  • Say no to meetings. Yes, you can do without them for a day, even if you are the president of the company. 🙂

Have you done any soul coding lately? 🙂

[1] Ok, not quite 12 hours, but it was on my mind all the time. 😉

Standard
Performance, Programming, Ruby

Ruby is not all that slow

On one of my Ruby on Rails projects, I worked on a story that involved performing calculations on some reference data stored in a table in a database. The table was like a dimension table (in data warehousing parlance) and was non-trivial in size, say about 100 columns and 1000 rows. We had to calculate, something similar to a median of a column, for all the rows, for all 100 columns. And the challenge was to perform this calculation at request time, without being too much of a performance overhead.

My first response to any such calculation intensive activity is to push it offline, to avoid the runtime calculation penalty. But in this case, the calculation involved inputs from the user and hence did not lend itself very well to pre-processing. We could have done something that a Oracle cube does, where it builds aggregates of fact data before hand, to expedite the processing time required. But in our case, pre-processing the results for all the possible user input options would have been extremely wasteful in terms of storage. The other concern with this approach would be that, there would be some time delay between the data being available and being usable, due to the pre-processing.

Then came the suggestion of manipulating the data in stored procedure. It made me shudder! Having recently read Pramod Sadalage’s blog1 on pain points of stored procedures, I certainly was not in a mood to accept this solution. The pain points outlined in the blog that particularly appealed to me were, no modern IDE’s to support refactoring, requiring a database to compile a stored procedure, immaturity of the unit testing frameworks, and vertical scaling being the only option to scale a database engine.

As we all know, Ruby is perceived to be slow and incompetent to perform any computationally intensive tasks, and consequentially was not an option on the table. I thought to myself, Ruby can’t be that slow. The calculation we were doing was non-trivial but not super involved either. I decided to give it a shot.

We started by doing all these calculations using ActiveRecord objects and found that the performance was not good at all. ActiveRecord was the culprit because it was creating all these objects in memory and considerably slowing down the calculation process. We ditched it and opted for straight SQL instead and storing the results in arrays and performing the calculations on those arrays. Better! But not good enough. We found that we were performing operations like finding max, min, order by for a given column values in Ruby and which wasn’t particularly performant. We delegated those to the database engine, since they are typically good at such things and saw quite a hefty performance gain. By doing these simple tricks, we could pretty much get the performance that we were looking for.

Even though we had solved the performance problem, we had an unintended side-effect of our design. Given that we were processing data in arrays and outside of the objects where they were fetched from, the code looked very procedural. To solve this problem, we created some meaningful abstractions to hold the data and operate on it. These weren’t at the same granularity as the ActiveRecord would have created in the first place, but at a much higher level. This way it was a good compromise between, having too many objects and procedural code on the other hand, yet getting the performance we desired.

The biggest win for me in doing all these calculations in Ruby, was keeping the business logic in one place, in the app, and unit testing exhaustively the calculation logic.

I guess none of this is revolutionary in any way, but I guess next time I face a similar situation, I would have the conviction that, Ruby is not all that slow.

1 With so much pain, why are stored procedures used so much

Standard